ERRATA

BIOCHIMICA ET BIOPHYSICA ACTA, VOL. 596 (1980)

p. 89, Table II, 'series a' should read:

Series a	86 ± 46		Ca ²⁺ /+EGTA	
		22 ± 12	70 ± 124	1 ± 25
Control Tityustoxin (10 ⁻⁵ M)	1039	272	666 ± 8	326 ± 6
23 mM K ⁺	293 ± 104	60 ± 95		83 ± 20
23 mM K † + tityustoxin (10 $^{-5}$ M)	672 ± 139	171 ± 32	568 ± 113	132 ± 60

- p. 487, last line, for 'beef red hemolysates' read 'beef red cell hemolysates'
- p. 488, Table I, under 'Percent change', fourth value from top, for '34 ± 3.1' read '-34 ± 3.1'

Table I, for 'Rate constant for dephosphorylation (h-1)' read 'Rate constant for dephosphorylation (s-1)'

BIOCHIMICA ET BIOPHYSICA ACTA, VOL. 597 (1980)

- p. 209, line 19, for 'monoglycosyl' read 'monoglucosyl'
- p. 638, line 33, for '10 or 25°C' read '40 or 25°C'
- p. 639, Figs. 1 and 2, top right-hand quantities in both figures, for '100 mV' read '100 ns'
- p. 639, lines 4—6 should read:

decay of approx. 200 ns. With the assumption that the specific capacitance $(C_{\rm m})$ of the membrane (555 nF \cdot cm⁻²) is not changed greatly during breakdown, a specific resistance $(R_{\rm m})$ of 0.4 Ω \cdot cm⁻² is calculated from the $R_{\rm m}$ \cdot $C_{\rm m}$ -time constant

p. 641, line 10 beneath Eqn. 1 should read:

case, Y_m should become a function of the compression time of the membrane